Монография представляет собой исследование современных методов оптимизации сварочных процессов, акцентируя внимание на теплоустойчивых сталях. Автор, подчёркивает важность разработки эффективных технологий, что делает его работу особенно ценной для специалистов в этой области.
Эта монография станет надёжным источником для профессионалов, работающих в области машиностроения и технологий сварки.
Экономическое развитие страны напрямую зависит от рационального использования материальных, энергетических и трудовых ресурсов. Одним из перспективных направлений в этой области является повышение эффективности сборки заготовок и конструктивных элементов машин и агрегатов, а также создание менее энергоёмких технологических процессов, основанных на широком применении различных методов обработки металлов.
В нефтеперерабатывающей промышленности существует значительная потребность в оборудовании, изготавливаемом из теплоустойчивых сталей, таких как 12МХ. Эти стали предназначены для длительной эксплуатации при температурах до 550—570ºС и находят широкое применение в машиностроении для производства труб паронагревателей, трубопроводов и коллекторных установок высокого давления, а также для поковок паровых котлов и паронагревателей.
Также имеется необходимость в использовании теплоустойчивых сталей типа 12МХ для изготовления крупногабаритных сварных сосудов и аппаратов в нефтегазохимическом аппаратостроении. Эти стали обладают высокими прочностными и антикоррозионными свойствами при высоких температурах, особенно при наличии бейнитной или сорбитной структуры с равномерно распределенными мелкодисперсными карбидами.
Однако в легированных сталях типа 12МХ (включая 15ХМ и 12Х1МФ), содержащих стойкие карбидосодержащие элементы, такие как молибден, хром и ванадий, при огневой резке и сварке могут возникать участки с закалочными структурами. Это происходит на околошовных участках зоны термического влияния (ЗТВ), где температура превышает Ас3, а также на участках, подвергнутых нагреву до температуры Ас1, что приводит к снижению прочностных свойств.
Процесс изготовления оборудования из теплоустойчивых сталей типа 12МХ с применением сварки требует предварительного подогрева до температуры 150—200ºС и незамедлительной термической обработки при температуре 670—690ºС для снятия остаточных сварочных напряжений и предотвращения образования холодных трещин. Однако такая термическая обработка является сложным и энергоёмким процессом, который трудно осуществить в полевых условиях.
Исследование возможности снятия остаточных напряжений в конструкциях аппаратов с помощью циклического нагружения (вибрационной обработки) представляет собой актуальную задачу. Важно найти способы управления характером и уровнем остаточных напряжений, что позволит повысить технологическую прочность и качество аппаратов нефтеперерабатывающей промышленности. На основе работ таких учёных, как В. М. Сагалевич, А. М. Ким-Хенкин, К. М. Рагульскис, О. Г. Чикалиди, А. М. Велбель и других, выдвинуто предположение о возможности изменения характера и снижения уровня остаточных сварочных напряжений в различных конструкциях с помощью пластического деформирования или вибрационной обработки. Проведённые исследования подтвердили возможность управления остаточными напряжениями в металлических конструкциях и в ряде случаев замены дорогостоящей термической обработки на вибрационную.
Предварительный подогрев свариваемых конструкций снижает производительность и является сложным энергоёмким процессом. Небольшие отклонения от нормируемой технологии подогрева и режимов сварки могут привести к снижению прочности сварного соединения. В то же время, вибрационная обработка свариваемых элементов, проводимая в процессе сварки, является альтернативным методом снижения остаточных напряжений и повышения прочности сварных соединений.