Основательное знакомство автора с технологиями искусственного интеллекта (ИИ) началось со вполне осязаемого желания автоматизировать рабочую рутину. В частности, для автоматизации учета студенческой посещаемости аудиторных занятий возникла идея использования системы компьютерного зрения с распознаванием образов. Весь собранный из разрозненных интернет-источников материал, необходимый для решения этой и многих других творческих задач, представлен в настоящем обзоре. Затронем психологические, этические и юридические аспекты разработки и применения систем искусственного интеллекта. Охватим исторический период бурного развития соответствующих идей начиная с первых языковых моделей 1950-х годов, когда это еще не было мейнстримом. Приведём серии конкретных примеров простейших реализаций фундаментальных принципов построения нейронных сетей в MATLAB. По прочтении книги прийдет четкое понимание того, как происходит поиск серии любимого сериала по вольному описанию в голосовой колонке, почему ИИ с легкостью докажет рациональность любого числа и тут же не моргнув светодиодом передокажет его иррациональность, а главное, зачем всё это внедряется повсеместно.
Психологические основы интеллекта
Начнём с азов. А как мы, собственно, понимаем, что мы что-то вдруг понимаем или делаем вид, когда что-либо поняли? Различные объяснения и интерпретации в сфере разработки искусственного интеллекта возникают не на пустом месте. В этой главе мы поймём, что интерпретируемость и объяснимость являются принципиально разными требованиями к системам машинного обучения. Чтобы доказать это, мы выполнили обзор научных публикаций по экспериментальной психологии, относящейся к интерпретации (особенно числовых стимулов) и пониманию. Оказывается, интерпретация относится к способности контекстуализировать выходные данные модели таким образом, чтобы связать их с разработанным функциональным назначением системы, а также целями, ценностями и предпочтениями конечных пользователей. В отличие от этого, объяснение относится к способности точно описать механизм или реализацию, которая привела к данным на выходе алгоритма, часто для того, чтобы алгоритм мог быть улучшен каким-либо образом. Помимо этих определений, наш опыт показывает, что люди отличаются друг от друга систематическими способами, которые влияют на степень, в которой они предпочитают принимать решения, основанные на подробных объяснениях, а не на менее точных интерпретациях. Эти индивидуальные различия, такие как личностные черты и навыки, связаны с их способностью извлекать значимые интерпретации из точных объяснений выходных данных модели. Последнее означает, что вывод системы должен быть адаптирован к различным типам пользователей. Эта глава опирается на научную литературу по информатике, системной инженерии и экспериментальной психологии, чтобы лучше определить концепции интерпретируемости и объяснимости для сложных инженерных систем. Мы уделяем особое внимание системам на основе искусственного интеллекта и машинного обучения (AI/ML).
Зачем же определять интерпретируемость и объяснимость? Мы сосредоточились на этих терминах из-за их актуального значения для внедрения алгоритмов машинного обучения, на что указывает несколько прагматических моментов, требующих алгоритмического вывода для предоставления объяснений или интерпретаций пользователям, которые могут значительно отличаться друг от друга с точки зрения их целей, образования или личностных качеств. Например, в современных экономических реалиях физические и юридические лица, подающие заявки на получение кредита, должны получать уведомления о причинах, по которым кредитор принял неблагоприятные решения по заявке или по существующему кредиту. Активно внедряются системы помощи потребителям и предприятиям путем обеспечения прозрачности процесса вычисления кредитного рейтинга и защиты от потенциальной кредитной дискриминации. Как следствие, возникают требования к кредиторам объяснить причины принятия неблагоприятных мер. Поэтому кредитор должен раскрыть основные причины отклонения заявки или принятия других неблагоприятных мер и точно описывать факторы, которые фактически учитываются или оцениваются кредитором.